
Ordered Sequence Classes

6-20 COOL User’s Manual

Ordered Sequence Classes

6-19COOL User’s Manual

Matrix Example 6.10 The following program declares two matrices of integers. The first matrix is

filled with a series of integral values computed in the nested loops, and the second ma-
trix is derived from the first. Several of the Matrix<Type> overloaded operators are
used, and the resulting matrices are printed.

 1 #include <COOL/Matrix.h> // COOL Matrix class

 2 DECLARE Matrix<int> // Declare a matrix of integers

 3 IMPLEMENT Matrix<int> // Implement matrix of integers

 4 int main (void) {

 5 Matrix<int> mc1(3,4), mc2(3,4); // Two 3x4 matrices of integers

 6 for (int i = 0; i < 3; i++) // For each row in matrix

 7 for (int j = 0; j < 4; j++) // For each column in matrix

 8 mc1.put(i,j,(i+2)*(j+3)); // Assign element value

 9 mc2 = mc1 + 5; // Copy matrix with added value

10 mc1 = mc1 + mc2; // Add the matrices together

11 cout << mc1 << ”\n” << mc2 << ”\n”; // Output the starting matrices

12 exit (0); // Exit with OK status

13 }

Line 1 includes the COOL Matrix.h class header file. Lines 2 and 3 declare and imple-
ment the Matrix<int> class. Line 5 declares two Matrix<int> variables, each of which
have three rows and four columns. Lines 6 through 8 generate a series of integral values
that are copied into the elements of the first matrix. Line 9 uses the overloaded addition
and assignment operators for the Matrix<Type> class and computes the value of the
second matrix. Line 10 uses the overloaded addition operator to add the two matrices
together. Line 11 uses the overloaded output operator to display the contents of each
matrix. Finally, the program ends with a valid exit code on line 12.

The following shows the output from the program:

17 21 25 29

23 29 35 41

29 37 45 53

11 13 15 17

14 17 20 23

17 21 25 29

Ordered Sequence Classes

6-18 COOL User’s Manual

Matrix<Type>& operator= (const Matrix<Type>& m);
Overloads the assignment operator for the Matrix<Type> class and assigns one
Matrix<Type> object to have the value of another by duplicating the size and ele-
ment values.

Matrix<Type>& operator+= (const Matrix<Type>& m);
Overloads the addition–with–assignment operator to provide matrix addition for
the Matrix<Type> class. The source is modified to contain the result. If the matri-
ces are of a different size, an Error exception is raised.

Matrix<Type>& operator+= (const Type& value);
Overloads the addition-with-assignment operator to provide scalar addition for the
Matrix<Type> class. The source is modified to contain the result. If the matrices
are of a different size, an Error exception is raised.

Matrix<Type>& operator*= (const Matrix<Type>& m);
Overloads the multiplication-with-assignment operator to provide matrix multipli-
cation for the Matrix<Type> class. The source is modified to contain the result. If
the matrices are of a different size, an Error exception is raised.

Matrix<Type>& operator*= (const Type& value);
Overloads the multiplication-with-assignment operator to provide scalar multipli-
cation for the Matrix<Type> class. The source is modified to contain the result

Boolean operator== (const Matrix<Type>& m) const;
Overloads the equality operator for the Matrix<Type> class. This function returns
TRUE if the matrices have the same number of elements with the same values;
otherwise, this function returns FALSE.

inline Boolean operator!= (const Matrix<Type>& m) const;
Overloads the inequality operator for the Matrix<Type> class. This function
returns TRUE if the matrices have a different number of elements or different val-
ues.

inline void put (unsigned int row, unsigned int col, Type value);
Assigns value to the element at the specified row and col. If the row or column
specification is out of range, an Error exception is raised.

inline int rows () const;
Returns the number of rows in the matrix.

inline void set_compare (Matrix_Compare = NULL);
Updates the compare function for this class of matrix. Matrix_Compare is a func-
tion of type Boolean (*Function)(const Type&, const Type&). If no argument is
provided, the operator== for the type over which the class is parameterized is
used.

Friend Functions: friend ostream& operator<< (ostream& os, const Matrix<Type>& m);
Overloads the output operator for a reference to a Matrix<Type> object m to pro-
vide a formatted output capability.

inline friend ostream& operator<< (ostream& os, const Matrix<Type>* m);
Overloads the output operator for a pointer to a Matrix<Type> object m to provide
a formatted output capability.

Ordered Sequence Classes

6-17COOL User’s Manual

Name: Matrix<Type> — A parameterized matrix class

Synopsis: #include <COOL/Matrix.h>

Base Classes: Matrix, Generic

Friend Classes: None

Constructors: Matrix<Type> (unsigned int row, unsigned int col);
Allocates enough storage for a matrix of a specific type with the specified number
of rows and columns.

Matrix<Type> (unsigned int row, unsigned int col, int init_num, ...);
Allocates enough storage for a matrix of the specified type and size. The third argu-
ment init_num indicates the number of optional initialization values. Matrix ele-
ments are initialized in row-major order.

Matrix<Type> (unsigned int row, unsigned int col, const Type& value);
Allocates enough storage for a matrix of a specific type with the specified number
of rows and columns. In addition, each element of the matrix is initialized to value.

Matrix<Type> (const Matrix<Type>& m);
Duplicates the size and value of a Matrix<Type> object m.

Member Functions: inline int columns () const;
Returns the number of columns in the matrix.

void fill (const Type& value);
Sets all elements in the matrix to value.

inline Type get (unsigned int row, unsigned int col) const;
Returns the value of the element at the indicated row and column. If the row or
column specification is out of range, an Error exception is raised.

Matrix<Type> operator+ (const Matrix<Type>& m) const;
Overloads the addition operator to provide matrix addition for the Matrix<Type>
class. A new matrix is returned as the result. If the matrices are of a different size,
an Error exception is raised.

Matrix<Type> operator+ (const Type& value) const;
Overloads the addition operator to provide scalar addition for the Matrix<Type>
class. A new matrix is returned as the result.

Matrix<Type> operator* (const Matrix<Type>& m) const;
Overloads the multiplication operator to provide matrix multiplication for the Ma-
trix<Type> class. A new matrix is returned as the result. If the matrices are of a
different size, an Error exception is raised.

Matrix<Type> operator* (const Type& value) const;
Overloads the multiplication operator to provide scalar multiplication for the Ma-
trix<Type> class. A new matrix is returned as the result.

Matrix<Type>& operator= (const Type& value);
Overloads the assignment operator for the Matrix<Type> class and assigns all ele-
ments of a matrix to value.

Ordered Sequence Classes

6-16 COOL User’s Manual

inline friend ostream& operator<< (ostream& os, const Queue<Type>* q);
Overloads the output operator for a pointer to a Queue<Type> object to provide a
formatted output capability.

Queue Example 6.8 The following program declares a queue of doubles. Random floating-point val-

ues are added to the queue in a loop. The elements added are then output. Next, a loop
iterates through the elements of the queue by using the current position functionality. If
any random number added to the queue is below some arbitrary tolerance, it is removed.
Finally, the remaining elements are printed.

 1 #include <COOL/Queue.h> // COOL Queue class

 2 #include <COOL/Random.h> // COOL Random number class

 3 DECLARE Queue<double>; // Declare a queue of doubles

 4 IMPLEMENT Queue<double>; // Implement a queue of doubles

 5 int main (void) {

 6 Queue<double> q1; // Create empty queue

 7 Random r (SIMPLE, 1, 3.0, 9.0); // Simple random generator

 8 for (int i = 0; i < 5; i++) // Put five random numbers

 9 q1.put (r.next ()); // into the queue

10 cout << q1; // Output queue elements

11 for (q1.reset(); q1.next();) // For each element in queue

12 if (q1.value() < 4.5) // If less than tolerance

13 q1.remove (); // Remove from queue

14 cout << ”\n” << q1; // Output queue elements

15 exit (0); // Exit with OK status

16 }

Lines 1 through 4 define the Queue<double> class, and line 6 declares an instance of this
class. Line 7 declares a random number generator whose values are guaranteed to be
within the range 3.0 to 9.0 inclusive (see Section 3, Number Classes, for a discussion
about the Random class). Lines 8 and 9 contain a simple loop that adds five random
numbers to the queue. Line 10 uses operator<< for the Queue class to output the ele-
ment values. Lines 11 through 13 use the current position functions to iterate through
the elements, removing any entry below an arbitrary tolerance. Finally, the remaining
elements are output.

The following shows the output from a sample run of the program:

<First in> 6.08322 4.05445 4.85191 6.2072 8.68577 <Last in>

<First in> 6.08322 4.85191 6.2072 8.68577 <Last in>

Matrix Class 6.9 The Matrix<Type> class implements two-dimensional arithmetic matrices for a

user-specified numeric data type. Using the parameterized types facility of C++, it is
possible, for example, for the user to create a matrix of rational numbers by
parameterizing the Matrix class over the Rational class (see Section 3, Number
Classes, for a discussion regarding the Rational class). The only requirement for the
type is that it support the basic arithmetic operators. Note that unlike the other sequence
classes, the Matrix<Type> class is fixed-size only (that is, it will not grow once the size
has been specified to the constructor).

Ordered Sequence Classes

6-15COOL User’s Manual

Boolean remove ();
Removes the element at the current position. This function returns FALSE if the
current position is invalid; otherwise, this function sets the current position to the
element immediately following the element removed (if not at end of queue) and
returns TRUE. If the current position is at the last element before removing, this
function invalidates the current position and returns TRUE after removing the ele-
ment.

Boolean remove (const Type& value);
Searches for value and, if found, this function removes and sets the current position
to the element immediately following the element removed, and then it returns
TRUE. If value is found but at the end of the queue, this function invalidates the
current position and returns TRUE. If the element is not found, this function re-
turns FALSE.

inline void reset ();
Invalidates the current position.

void resize (long number);
Resizes the queue for at least number of elements. If a growth ratio has been se-
lected and it satisfies the resize request, the queue is grown by this ratio, the current
position is invalidated, and TRUE is returned. Otherwise, this function returns
FALSE. If the size specified is zero or negative, an Error exception is raised.

inline void set_alloc_size (int size);
Updates the allocation growth size to be used when the growth ratio is zero. Default
allocation growth size is 100 bytes. If the size specified is negative, an Error ex-
ception is raised.

inline void set_compare (Queue_Compare = NULL);
Updates the compare function for this class of queue. Queue_Compare is a func-
tion of type Boolean (*Function)(const Type&, const Type&). If no argument is
provided, the operator== for the type over which the class is parameterized is
used.

inline void set_growth_ratio (float ratio);
Updates the growth ratio for this instance of a queue to ratio. When a queue needs
to grow, the current size is multiplied by the ratio to determine the new size. If ratio

is negative, an Error exception is raised.

Boolean unget (const Type& value);
Puts value onto the front of the queue. If required and not prohibited, this function
grows the queue, puts the first-in item on the queue, and returns TRUE. Otherwise,
this function returns FALSE. If there are no elements in the queue, an Error ex-
ception is raised.

Type& unput ();
Removes and returns a reference to the last-in item on the queue.

inline Type& value ();
Returns a reference to the element at the current position. If the current position is
invalid, an Error exception is raised.

Friend Functions: friend ostream& operator<< (ostream& os, const Queue<Type>& q);
Overloads the output operator for a reference to a Queue<Type> object to provide
a formatted output capability.

Ordered Sequence Classes

6-14 COOL User’s Manual

inline Queue_state& current_position ();
Returns a reference to the state information associated with the current position.
This function should be used with the Iterator<Type> class to save and restore the
current position, thus facilitating multiple iterators over an instance of queue.

Boolean find (const Type& value);
Searches the queue for value. If value is found, this function sets the current posi-
tion and returns TRUE; otherwise, this function resets the current position and re-
turns FALSE.

Type& get ();
Removes and returns a reference to the first-in item on the queue. If there are no
elements in the queue, an Error exception is raised.

inline Boolean is_empty () const;
Returns TRUE if there are no items in the queue. Otherwise, this function returns
FALSE.

inline long length () const;
Returns the number of elements in the queue.

inline Type& look ();
Returns the first-in item on the queue. If there are no elements in the queue, an
Error exception is raised.

Boolean next ();
Advances the current position to the next element in the queue and returns TRUE.
If the current position is invalid, this function sets the current position to the first
element and returns TRUE. If the current position is the last element of the queue,
this function invalidates the current position and returns FALSE.

Queue<Type>& operator= (const Queue<Type>& q);
Overloads the assignment operator for the Queue class and assigns q to the queue
object by duplicating the size and element values. This function invalidates the cur-
rent position.

Boolean operator== (const Queue<Type>& q) const;
Overloads the equality operator for the Queue class. This function returns TRUE
if the queues have an equal number of elements with the same values; otherwise,
this function returns FALSE.

inline Boolean operator!= (const Queue<Type>& q) const;
Overloads the inequality operator for the Queue class. This function returns
TRUE if the queues have an unequal number of elements or unequal values.

Boolean prev ();
Moves the current position pointer to the previous element in the queue and returns
TRUE. If the current position is invalid, this function moves to the last element and
returns TRUE. If the current position is the first element in the queue, this function
invalidates the current position and returns FALSE.

Boolean put (const Type& value);
Puts value onto the back of the queue, making it the last-in item. If required and not
prohibited, this function grows the queue, puts the new last-in item on the queue,
and returns TRUE. Otherwise, this function returns FALSE.

Ordered Sequence Classes

6-13COOL User’s Manual

Queue Class 6.7 The Queue<Type> class implements a conventional first-in, first-out data struc-

ture that holds a user-specified data type. All memory management and initialization is
encapsulated and performed by the class constructors and member functions. Queue
objects can be either static-sized or dynamic. Queues are, by default, dynamic in nature.
A static-sized queue object is selected by setting the growth allocation size to zero or by
passing in a pointer to a block of user-supplied storage to the constructor. If a queue is of
static size and an operation is performed that requires more storage, an Error exception
is raised.

The Queue<Type> class implements the notion of a current position. This is useful for
iterating through the elements of a queue. The current position is maintained in a data
member of type Queue_state and is set or reset by all member functions affecting ele-
ments in the class. Member functions are provided to reset the current position, move to
the next and previous elements, find an element, and get the value at the current posi-
tion. The Iterator<Type> class provides a mechanism to save and restore the state asso-
ciated with the current position, thus allowing the programmer to use multiple iterators
over the same instance of a queue.

The Queue<Type> class allows the programmer to add and/or remove items from
either end of the queue. In addition, the current position and iterator functions allow the
programmer to examine other entries in the middle of the queue and remove or change
them. This would be useful in implementing a prioritized queue where the entries may
need to be rearranged at times.

Name: Queue<Type> — A dynamic, parameterized queue

Synopsis: #include <COOL/Queue.h>

Base Classes: Queue, Generic

Friend Classes: None

Constructors: Queue<Type> ();
Creates an empty queue of the specified type.

Queue<Type> (unsigned long number);
Allocates enough storage for a queue of a specific type to hold number of elements
specified by the argument.

Queue<Type> (const Queue<Type>& q);
Duplicates the size and value of a queue object q.

Queue<Type> (void* storage, unsigned long number);
Creates a static-sized queue object for number of elements whose storage storage is
provided by the user. If an object of this type attempts to grow dynamically or the
programmer invokes the resize member function, an Error exception is raised.

Member Functions: inline long capacity () const;
Returns the maximum number of elements the stack can contain.

void clear ();
Sets the number of items in the queue to zero. This function invalidates the current
position.

Ordered Sequence Classes

6-12 COOL User’s Manual

Stack Example 6.6 The following program declares a stack capable of initially holding 10 integers.

Integer values are pushed onto the stack in a loop. Notice that since more than 10 ele-
ments are pushed onto the stack, it must grow automatically and add storage capacity as
necessary to hold the extra elements. Finally, these elements are then popped from the
stack and printed.

 1 #include <COOL/Stack.h> // COOL Stack class

 2 DECLARE Stack<int>; // Declare stack of integers

 3 IMPLEMENT Stack<int>; // Implement stack of integers

 4 int main (void) {

 5 Stack<int> s1(3); // Declare stack of integers

 6 for (int i = 1; i <= 5; i++) // In a small loop, push “n”

 7 s1.pushn (i,i); // copies of an integer value

 8 for (i = 0; i < 5; i++) { // In another similar loop up to

 9 for (int j = 0; j < s1.top(); j++) // the top element value, get

10 cout << s1.pop(); // a value from stack and print

11 cout << ”\n”; // Output a newline and repeat

12 }

13 exit (0); // Exit with OK status

14 }

Lines 1 through 3 define the Stack class. Line 5 defines a stack of integers with initial
storage for 10 elements. Lines 6 and 7 loop from one through five and push the current
loop number on the stack. Thus, the first time through the loop, one element whose
value is one is pushed. The second time, two elements whose values are two are pushed,
and so on. Because more than 10 elements are added to the stack, an automatic resize is
performed by the stack object to accommodate more elements. Because no user-speci-
fied growth factor was given, enough storage is allocated to hold 100 elements. Lines 8
through 11 contain nested loops that read the top value on the stack, loop that many
times, pop off a value, and print it. After each inner loop completes, a newline character
is printed.

The following shows the output from the program:

55555

4444

333

22

1

Ordered Sequence Classes

6-11COOL User’s Manual

inline void set_growth_ratio (float ratio);
Updates the growth ratio for this instance of a stack to ratio. When a stack needs to
grow, the current size is multiplied by the ratio to determine the new size. If ratio is
negative, an Error exception is raised.

inline long set_length (long number);
Specifies the number of elements in a stack to allow random access via the over-
loaded operator[] member function. If number is larger than the storage allocated,
this function truncates number to the largest value that the allocated size will sup-
port. This function returns the new element count. If number is negative, an Error
exception is raised.

inline Type& top ();
Returns (without removing) a reference to the top element of the stack. If the num-
ber of elements (that is, length) has been set to a zero-relative index greater than the
size of the stack, an Error exception is raised.

Friend Functions: friend ostream& operator<< (ostream& os, const Stack<Type>& stk);
Overloads the output operator for a reference to a Stack<Type> object to provide a
formatted output capability.

inline friend ostream& operator<< (ostream& os, const Stack<Type>* stk);
Overloads the output operator for a pointer to a Stack<Type> object to provide a
formatted output capability.

Ordered Sequence Classes

6-10 COOL User’s Manual

Boolean operator== (const Stack<Type>& stk) const;
Overloads the equality operator for the Stack<Type> class. Returns TRUE if the
stacks have an equal number of elements with the same values; otherwise this func-
tion returns FALSE.

inline Boolean operator!= (const Stack<Type>& stk) const;
Overloads the inequality operator for the Stack<Type> class. This function returns
TRUE if the stacks have a unequal number of elements or unequal values; other-
wise this function returns FALSE.

inline Type& operator[] (unsigned long number);
Overloads the index operator for the Stack<Type> class. This function returns a
reference to the element of the stack that is number of elements from the top of the
stack. If number is greater than the size of the stack, an Error exception is raised.

inline Type& pop ();
Removes and returns a reference to the top element on the stack. If the number of
elements (that is, length) has been set to a zero-relative index greater than the size
of the stack, an Error exception is raised.

Type& popn (long n);
Pops n elements off the stack, returning a reference to the last one popped off the
stack. With an argument of zero, this function returns the top item of the stack with-
out removing it. If the number of elements to pop is negative, an Error exception is
raised.

long position (const Type& value) const;
Searches the stack for value. If value is found, this function returns the zero-relative
index, from the top of the stack, of that element; otherwise, this function returns –1.

inline Boolean push (const Type& value);
Pushes value onto the top of a stack. If required and not prohibited, this function
grows the stack object. This function returns TRUE if successful; otherwise, this
function returns FALSE. If the stack is prohibited from growing dynamically, an
Error exception is raised.

Boolean pushn (const Type& value, long n);
Pushes n items onto the top of the stack, all of which have the specified value.
When n is zero, this function replaces the top item on the stack with value. If re-
quired and not prohibited, this function grows the stack object. This function re-
turns TRUE if successful; otherwise, this function returns FALSE. If the stack is
prohibited from growing dynamically, an Error exception is raised.

void resize (long number);
Resizes the stack for at least number of elements. If a growth ratio has been selected
and it satisfies the resize request, the stack is grown by this ratio. If the stack is
prohibited from dynamically growing, an Error exception is raised.

inline void set_alloc_size (int size);
Updates the allocation growth size to be used when the growth ratio is zero. Default
allocation growth size is 100 bytes. Setting the allocation growth size to zero results
in a static-sized object. If size is zero or negative, an Error exception is raised.

inline void set_compare (Stack_Compare = NULL);
Sets the compare function for this class of stack. Stack_Compare is a user-defined
function of type Boolean (*Function)(const Type&, const Type&). If no such
function is provided, the operator== for the type over which the class is
parameterized is used.

Ordered Sequence Classes

6-9COOL User’s Manual

Stack Class 6.5 The Stack<Type> class implements a conventional first-in, last-out data structure

that holds a user-specified data type. All memory management and initialization is en-
capsulated and performed by the class constructors and member functions. Stack ob-
jects can be either static-sized or dynamic. Stacks are, by default, dynamic in nature. A
static-sized stack object is selected by setting the growth allocation size to zero or by
passing in a pointer to a block of user-supplied storage to the constructor. If a stack is of
static size and an operation is performed that requires more storage, an Error exception
is raised.

Name: Stack<Type> — A dynamic, parameterized stack

Synopsis: #include <COOL/Stack.h>

Base Classes: Stack, Generic

Friend Classes: None

Constructors: Stack<Type> ();
Creates an empty stack of the specified type.

Stack<Type> (unsigned long number);
Allocates enough storage for a stack of a specific type to hold number of elements.

Stack<Type> (const Stack<Type>& stk);
Duplicates the size and value of a stack object stk.

Stack<Type> (void* storage, unsigned long number);
Creates a static-sized stack object for number of elements whose storage storage is
provided by the user. If an object of this type attempts to grow dynamically or the
programmer invokes the resize member function, an Error exception is raised.

Member Functions: inline long capacity () const;
Returns the maximum number of elements the stack can contain.

inline void clear ();
Sets the number of elements in the stack to zero.

Boolean find (const Type& value);
Searches the stack for value. If value is found, this function returns TRUE; other-
wise, this function returns FALSE.

inline Boolean is_empty () const;
Returns TRUE if the stack has no elements; otherwise, this function returns
FALSE.

inline long length () const;
Returns the number of elements in the stack.

Stack<Type>& operator= (const Stack<Type>& stk);
Overloads the assignment operator for the Stack<Type> class and assigns stk to the
stack object by duplicating the size and element values. If the stack object is prohib-
ited from dynamically growing, an Error exception is raised.

Ordered Sequence Classes

6-8 COOL User’s Manual

Vector Example 6.4 The following program declares a vector of five strings whose contents are initial-

ized with state names. The element values are first printed by using operator<<, then
sorted in reverse alphabetical order, and finally printed by iterating through the vector
by using the current position functions.

 1 #include <COOL/String.h> // COOL String class

 2 #include <COOL/Vector.h> // COOL Vector class

 3 DECLARE Vector<String>; // Declare vector of strings

 4 IMPLEMENT Vector<String>; // Implement vector of strings

 5 Boolean my_compare (const String& s1, const String& s2) {

 6 return ((s1 <= s2) ? FALSE : TRUE); // Reverse alphabetize

 7 }

 8 int main (void) {

 9 Vector<String> v1(5); // Declare vector of strings

10 v1.push (”Texas”); // Add “Texas”

11 v1.push (”Alaska”); // Add “Alaska”

12 v1.push (”New York”); // Add “New York”

13 v1.push (”Alabama”); // Add “Alabama”

14 v1.push (”North Dakota”); // Add “North Dakota”

15 cout << v1 << ”\n”; // Output the vector

16 v1.sort (my_compare); // Reverse sort the vector

17 for (v1.reset(); v1.next();) // For each element

18 cout << v1.value() << ”\n”; // Output the value

19 exit (0); // Exit with OK status

20 }

Lines 1 through 4 define the Vector and String classes. Lines 5 through 7 declare a
simple sort function that reverses the lexical comparison test performed by operator<=
in the String class. Line 9 defines a vector of strings with initial storage for five ele-
ments. Lines 10 through 14 push five literal character strings into the vector. Line 15
uses operator<< for the Vector class to output the element values. Line 16 sorts the
vector according to the predicate function provided. Finally, lines 17 and 18 use the
current position functions to iterate through the elements, printing each one.

The following shows the output for the program:

Texas Alaska New York Alabama North Dakota

Texas

North Dakota

New York

Alaska

Alabama

Ordered Sequence Classes

6-7COOL User’s Manual

inline void set_compare (Vector_Compare = NULL);
Updates the compare function for this class of vector. Vector_Compare is a func-
tion of type Boolean (*Function)(const Type&, const Type&). If no argument is
provided, the operator== for the type over which the vector is parameterized is
used..

inline void set_growth_ratio (float ratio);
Updates the growth ratio for this instance of a vector to the specified value. When a
vector needs to grow, the current size is multiplied by the ratio to determine the new
size. If ratio is negative, an Error exception is raised.

inline long set_length (long);
Specifies the number of elements in a vector to allow random access via the over-
loaded operator[] member function. If the number requested is larger than the stor-
age allocated, this function truncates to the largest value that the allocated size will
support. This function returns the updated number of elements. If the length is
negative, an Error exception is raised.

void sort (Predicate p);
Sorts the elements of a vector by using the supplied predicate for determining the
collating sequence and invalidates the current position. Predicate is a user-defined
function of type int (*Function) (const Type&, const Type&) that returns –1 if the
first argument should precede the second, zero if they are equal, and 1 if the first
argument should follow the second.

inline Type& value ();
Returns a reference to the element at the current position. If the current position is
invalid, an Error exception is raised.

Friend Functions: friend ostream& operator<< (ostream& os, const Vector<Type>& vec);
Overloads the output operator for a reference to a Vector<Type> object to provide
a formatted output capability.

friend ostream& operator<< (ostream& os, const Vector<Type>* vec);
Overloads the output operator for a pointer to a Vector<Type> object to provide a
formatted output capability.

Ordered Sequence Classes

6-6 COOL User’s Manual

inline Boolean put (const Type& value, long n)
Replaces the nth (zero-relative) element in the object with value. This function re-
turns TRUE if the nth element exists; otherwise, this function returns FALSE. If
the index is negative, an Error exception is raised.

Type remove ();
Removes and returns the element at the current position. This function sets the cur-
rent position to the element immediately following the element removed. If the
element is found but at the end of the vector, this function invalidates the current
position.

Boolean remove (const Type& value);
Searches for value and, if found, this function removes and sets the current position
to the element immediately following the element removed, and then it returns
TRUE. If value is found but at the end of the vector, this function invalidates the
current position and returns TRUE. If value is not found, this function returns
FALSE.

Boolean remove_duplicates ();
Removes any duplicate elements from the vector and invalidates the current posi-
tion. This function returns TRUE if any elements were removed; otherwise, this
function returns FALSE.

Boolean replace (const Type& value1, const Type& value2);
Replaces the first occurrence of value2 with value1. If value2 is found, this func-
tion returns TRUE; otherwise, this function returns FALSE.

Boolean replace_all (const Type& value1, const Type& value2);
Replaces all occurrences of value2 with value1 and sets the current position to the
last replaced element. This function returns TRUE if any elements were replaced;
otherwise, this function returns FALSE.

inline void reset ();
Invalidates the current position.

void resize (unsigned long size);
Resizes the vector for at least size number of elements and invalidates the current
position. If a growth ratio has been selected and it satisfies the resize request, the
vector is grown by this ratio. If the new size is negative, an Error exception is
raised.

void reverse ();
Reverses the order of elements in a vector and invalidates the current position.

Boolean search (const Vector<Type>& vec, long start=0, long end=–1);
Searches within the specified range (start inclusive, end exclusive) of a vector ob-
ject for a sequence vec. If end is equal to minus one (the default), all elements from
start to the end of the vector are filled. If the sequence is found, this function sets
the current position in the destination vector to the start of the matched sequence
and returns TRUE; otherwise, this function returns FALSE.

inline void set_alloc_size (int size);
Updates the allocation growth size for all instances of the class to be used when the
growth ratio is zero. Default allocation growth size is 100 bytes. Setting the alloca-
tion growth size to zero results in a static-sized object. If the size specified is nega-
tive, an Error exception is raised.

Ordered Sequence Classes

6-5COOL User’s Manual

Boolean operator== (const Vector<Type>& vec) const;
Overloads the equality operator for the Vector<Type> class and returns TRUE if
the vector object has the same number of elements with the same values as vec;
otherwise, this function returns FALSE.

inline Boolean operator!= (const Vector<Type>& vec) const;
Overloads the inequality operator for the Vector<Type> class and returns TRUE if
the vector object does not have the same number of elements or the same values as
vec; otherwise, this function returns FALSE.

inline Type& operator[] (unsigned long index) const;
Overloads the brackets operator for the Vector<Type> class and returns a reference
to an individual element from the vector at the zero-relative index specified. If in-

dex is invalid or out of range, an Error exception is raised. You should be careful
when using operator[] because an index is out of range if it is greater than the num-
ber of elements in the vector. If random access to all allocated space is desired, first
use the set_length() function.

Type& pop ();
Returns a reference to the last element in the vector and invalidates the current posi-
tion.

inline long position () const;
Returns the current position as a zero-relative index into the vector that can be used
with the overloaded operator[].

inline long position (const Type& value) const;
Searches the vector for value. If the element is found, this function updates the cur-
rent position and returns the zero-relative index of the element; otherwise, this
function invalidates the current position and returns –1.

Boolean prepend (const Vector<Type>& vec);
Inserts the elements of one vector vec at the beginning of a the vector object. The
current position is set to the new position of the first element of the old destination
vector. If required and not prohibited, this function grows the destination vector
and returns TRUE; otherwise, this function returns FALSE.

inline Boolean prev ();
Moves the current position pointer to the previous element in the vector and returns
TRUE. If the current position is invalid, this function moves to the last element and
returns TRUE. If the current position is the first element in the vector, this function
invalidates the current position and returns FALSE.

Boolean push (const Type& value);
Adds value to the end of a vector. If required and not prohibited, this function
grows the vector object. This function returns TRUE if successful; otherwise, this
function returns FALSE. This function sets the current position to point to the new
element added.

Boolean push_new (const Type& value);
Adds value to the end of a vector if it is not already in the vector. If required and not
prohibited, this function grows the vector object. This function returns TRUE if
successful; otherwise, this function returns FALSE. This function sets the current
position to point to the new element added.

Ordered Sequence Classes

6-4 COOL User’s Manual

Boolean insert_after (const Type& value);
Inserts (not replaces) the element value after the current position and does not
change the current position. If the current position is invalid, this function returns
FALSE. If required and not prohibited, this function grows the target vector and
returns TRUE; otherwise, this function returns FALSE.

Boolean insert_after (const Type& value, long index);
Inserts (not replaces) the element value after the specified zero-relative index and
updates the current position to the specified index. If the index is out of range, this
function returns FALSE. If required and not prohibited, this function grows the
target vector and returns TRUE; otherwise, this function returns FALSE.

Boolean insert_before (const Type& value);
Inserts (not replaces) the element value before the current position and advances
the current position one element, thus leaving it pointing at the same element. If the
current position is invalid, this function returns FALSE. If required and not prohib-
ited, this function grows the target vector and returns TRUE; otherwise, this func-
tion returns FALSE.

Boolean insert_before (const Type& value, long index);
Inserts (not replaces) the element value before the specified zero-relative index and
updates the current position to the specified index. If the index is out of range, this
function returns FALSE. If required and not prohibited, this function grows the
target vector and returns TRUE; otherwise, this function returns FALSE.

inline Boolean is_empty ();
Returns TRUE if the vector contains no entries; otherwise, returns FALSE.

inline long length () const;
Returns the number of elements in the vector.

void merge (const Vector<Type>& vec, Predicate p);
Merges the elements of one vector into another by using the supplied predicate for
determining the collating sequence. The current position in the destination vector is
invalidated. Predicate is a user-defined function of type int (*Function) (const
Type&, const Type&) that returns –1 if the first argument should precede the sec-
ond, zero if they are equal, and 1 if the first argument should follow the second.

inline Boolean next ();
Advances the current position to the next element in the vector and returns TRUE.
If the current position is invalid, this function sets the current position to the first
element and returns TRUE. If the current position is the last element of the vector,
this function invalidates the current position and returns FALSE.

Vector<Type>& operator= (const Type& value);
Overloads the assignment operator for the Vector<Type> class and assigns all ele-
ments value. If dynamic growth of the vector is prohibited, an Error exception is
raised. If there is enough room, the current position is invalidated and a reference to
the vector is returned.

Vector<Type>& operator= (const Vector<Type>& vec);
Overloads the assignment operator for the Vector<Type> class and assigns vec to
the vector object, duplicating the size and element values. The current position in
the destination vector is invalidated. A reference to the vector object is returned.

Ordered Sequence Classes

6-3COOL User’s Manual

Vector<Type> (unsigned long number, int init_num, ...);
Allocates enough storage for a vector of a specific type to hold number elements.
The second argument init_num specifies the number of optional initialization val-
ues provided for consecutive elements of the vector. Any remaining elements are
not initialized.

Vector<Type> (Vector<Type>& vec);
Duplicates the size and value of another vector object vec. Element values are cop-
ied by operator= for the type specified.

Vector<Type> (void* storeage, unsigned long number);
Creates a static-sized vector object for number elements whose storage storeage is
provided by the user. If a vector object created in this manner attempts to grow
dynamically or the resize member function is invoked, an Error exception is
raised.

Member Functions: Boolean append (const Vector<Type>& vec);
Adds the elements of vector vec to the end of a vector object. The current position in
the vector object is set to the position of the last element of vec. If required and not
prohibited, this function grows the destination vector and returns TRUE; other-
wise, this function returns FALSE.

inline long capacity () const;
Returns the maximum number of elements the vector can contain without growing.

void clear ()
Removes all elements in the object and invalidates the current position.

void copy (const Vector<Type>& vec, unsigned long start = 0,
long end = –1);

Copies the specified range (start inclusive and end exclusive) from the source vec-
tor vec to the vector object. The destination vector will grow if necessary and if
allowed. The current position is set to the last element copied into the destination. If
end is equal to minus one (the default), all elements from start to the end of the
vector are copied. If the start or end or both indexes are invalid or the vector needs
to grow dynamically and this is prohibited, an Error exception is raised.

inline Vector_state& current_position ();
Returns a reference to the state information associated with the current position.
This function should be used with the Iterator<Type> class to save and restore the
current position, thus facilitating multiple iterators over an instance of vector.

void fill (const Type& value, unsigned long start = 0, long end = –1);
Sets all elements within the specified range (start inclusive and end exclusive) to
value and invalidates the current position. If end is equal to minus one (the default),
all elements from start to the end of the vector are filled. If the start or end or both
indexes are invalid, an Error exception is raised.

Boolean find (const Type& value, unsigned long start = 0);
Searches the vector for value beginning at the specified start index. If the element is
found, this function sets the current position and returns TRUE; otherwise, this
function invalidates the current position and returns FALSE.

inline Type& get (int n)
Returns a reference to the nth (zero-relative) element in the object. This function
sets the current position to this element. If the index is negative or out of range, an
Error exception is raised.

Ordered Sequence Classes

6-2 COOL User’s Manual

Vector Class 6.3 The Vector<Type> class implements one-dimensional vectors of a user-specified

type. All memory management and initialization is encapsulated and performed by the
class constructors and member functions. Vector objects can be either static-sized or
dynamic. Vectors are, by default, dynamic in nature. A static-sized vector object is se-
lected by setting the growth allocation size to zero or by passing in a pointer to a block of
user-supplied storage to the constructor. If a vector is of static size and an operation is
performed that requires more storage, an Error exception is raised.

The Vector<Type> class implements the notion of a current position. This is useful for
iterating through the elements of a vector. The current position is maintained in a data
member of type Vector_state and is set or reset by all member functions affecting ele-
ments in the class. Member functions are provided to reset the current position, move to
the next and previous elements, find an element, and get the value at the current posi-
tion. The Iterator<Type> class provides a mechanism to save and restore the state asso-
ciated with the current position, thus allowing the programmer to use multiple iterators
over the same instance of a vector.

The Vector<Type> class follows conventional object-oriented programming tech-
niques and encapsulates the actual data elements from the user. The advantage of this
approach is that the class can automatically manage memory, maintain the element
count, and be aware of any changes made to the vector. The user of the class facilitates
this operation by using the insert, push, pop, and remove member functions and their
variants. However, the Vector<Type> class also overloads the operator[] and allows
the user to access a specific element directly. This is done partly for efficiency and
partly for compatibility with past usage.

The drawback of this approach, however, is that the object may not always know its
current state. For example, a newly declared vector object has no elements. Each use of
push to add an element will increment the element count by one. However, elements
added at random locations via the operator[] will not be counted. A user may get unex-
pected results by mixing these approaches. For this reason, the set_length() member
function allows the user to manually set the element count before use of operator[] for
random-access write operations.

Name: Vector<Type> — A dynamic, parameterized vector class

Synopsis: #include <COOL/Vector.h>

Base Classes: Vector, Generic

Friend Classes: None

Constructors: Vector<Type> ();
Creates an empty vector of the specified type.

Vector<Type> (unsigned long number);
Allocates enough storage for a vector of a specific type to hold number elements.
Elements are not initialized.

Vector<Type> (unsigned long number, const Type& value);
Allocates enough storage for a vector of a specific type to hold number elements,
each of which is initialized with value.

6-1COOL User’s Manual

ORDERED
SEQUENCE CLASSES

Introduction 6.1 The ordered sequence classes are a collection of basic data structures that imple-

ment sequential access data structures as parameterized classes, thus allowing the user
to customize a generic template to create a specific user-defined class. The following
classes are discussed in this section:

• Vector<Type>

• Stack<Type>

• Queue<Type>

• Matrix<Type>

The Vector<Type> class implements dynamic, one-dimensional vectors supporting
such functions as insert, delete, replace, search, reverse, print, and sort. The
Stack<Type> class implements dynamic stacks with the functions push, pop, find, po-
sition, and empty. The Queue<Type> class implements a dynamic, circular buffer
queue with support for get, unget, put, and unput to access elements at either end of the
queue. The Matrix<Type> class implements static-sized, two-dimensional matrices
with support for the basic arithmetic operations. The Vector<Type> and Queue<Type>
classes support the notion of a current position. See Section 5, Parameterized Tem-
plates, for more information regarding the current position mechanism and the
Iterator<Type> class.

In order to achieve successful compilation and usage, certain operations must be sup-
ported by any user-specified type over which a sequence class is parameterized. The
member functions operator=, operator<, operator>, operator==, and operator<<
for both pointer and reference must be overloaded for any class object used as the type.
In addition, the Matrix<Type> class requires the supplied type to support operator+,
operator–, operator/, and operator*. Note that built-in types already have these func-
tions defined.

NOTE: The ordered sequence classes use operator= of the parameterized type when
copying elements. You should be careful when parameterizing an ordered sequence
class over a pointer to a type, since the default pointer assignment operator usually cop-
ies the pointer, not the value pointed at.

Requirements 6.2 This section discusses the parameterized ordered sequence container classes. It

assumes that you have read and understood Section 5, Parameterized Templates. In ad-
dition, no attempt is made to discuss the concepts and algorithms for the data structures
discussed. You should refer to a general data structures or computer science text for this
information.

Printed on: Wed Apr 18 07:06:39 1990

Last saved on: Tue Apr 17 14:01:07 1990

Document: s6

For: skc

pl2ps 3.2.1 Copyright 1987 Interleaf, Inc.

